Taking advantage of the software infrastructure Radeon graphics stack developers set up for RAGE 128 graphics stack development

Since my initial focus of my foray into developing r128 graphics stack is to first fix its broken standby resume behavior (Again, I really hate having to leave a room with an idling desktop computer.), I wanted to analyze the issue using the same development strategy I used successfully with OpenChrome Project. What I mean by “successfully” here is that over the past 2 years, I have been able to substantially improve the standby resume reliability of OpenChrome graphics stack. Unlike in the past, I can now put most of my VIA Chrome based computers, including laptops, to sleep and wake it up fairly reliably. In fact when one starts doing this, you happen to stumble across network device drivers that do not handle standby resume very well (it either freezes the system or cannot renegotiate with the network after standby resume). What was crucial in analyzing various standby resume issues was the existence of a backdoor register manipulation tool. This tool allows the developer to play around with hardware registers to figure out what is going on with the display and do some simple experiments before writing the software code to fix the issue.

For OpenChrome, one developer who was once VIA Technologies’s open source community liaison developed such a tool about 9 years ago, and I have to admit it was very helpful in analyzing various OpenChrome DDX / DRM bugs. Since such a tool worked out fairly well for me, I was thinking I will like to have something similar for the r128 graphics stack.

If I recall what I wrote previously, ATI Technologies RAGE 128 and early Radeon like R100 and RV100 actually have similar CRTC (display engine) registers. Hence, I figured maybe I can try to run a tool called radeontool with a RAGE 128, and maybe it will work.

So, I cloned the radeontool Git repository and built the binary.

git clone git://people.freedesktop.org/~airlied/radeontool
cd radeontool
./autogen.sh

Here is how to dump all registers.

sudo ./radeontool regmatch ‘*’

Here is how to disable CRTC1 display.

sudo ./radeontool regset CRTC_EXT_CNTL 0x00000448

Here is how to enable CRTC1 display.

sudo ./radeontool regset CRTC_EXT_CNTL 0x00000048

The good news is that I was successfully able to toggle a register bit to manipulate (disrupt) the display. Now, I need to figure out how to prevent the complete freeze after resuming from standby . . .

2 thoughts on “Taking advantage of the software infrastructure Radeon graphics stack developers set up for RAGE 128 graphics stack development

Leave a comment